Notes for R

Some notes for R.

Filter rows according to values of multiple columns

Use filter_all, filter_at or filter_if from dplyr.1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# You can take the intersection of the replicated expressions:
filter_all(mtcars, all_vars(. > 150))
#> [1] mpg cyl disp hp drat wt qsec vs am gear carb
#> <0 rows> (or 0-length row.names)

# Or the union:
filter_all(mtcars, any_vars(. > 150))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> 2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> 3 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> 4 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> 5 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> 6 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> 7 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> 8 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> 9 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> 10 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> 11 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> 12 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> 13 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> 14 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> 15 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> 16 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> 17 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> 18 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> 19 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> 20 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> 21 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8


# You can vary the selection of columns on which to apply the
# predicate. filter_at() takes a vars() specification:
filter_at(mtcars, vars(starts_with("d")), any_vars((. %% 2) == 0))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> 2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#> 6 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4
#> 7 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4
#> 8 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4
#> 9 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
#> 10 15.5 8 318 150 2.76 3.520 16.87 0 0 3 2
#> 11 15.2 8 304 150 3.15 3.435 17.30 0 0 3 2
#> 12 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4
#> 13 19.2 8 400 175 3.08 3.845 17.05 0 0 3 2

# And filter_if() selects variables with a predicate function:
filter_if(mtcars, ~ all(floor(.) == .), all_vars(. != 0))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> 2 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> 3 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 4 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> 5 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> 6 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> 7 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Join path and/or filename

Use file.path().2

1
2
3
> file.path("usr", "local", "lib")
[1] "usr/local/lib"
>

List files in a dir

Use list.files().3

1
2
3
list.files(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE)

Read multiple files into one dataframe

Use do.call + lapply.4

1
dataset <- do.call("rbind",lapply(file_list, FUN=function(files){read.table(files, header=TRUE, sep="\t")}))

Select helpers in dplyr

Select helpers5:

  • starts_with(): starts with a prefix
  • ends_with(): ends with a prefix
  • contains(): contains a literal string
  • matches(): matches a regular expression
  • num_range(): a numerical range like x01, x02, x03.
  • one_of(): variables in character vector.
  • everything(): all variables.

Keep strings matching a pattern

Use stringr::str_subset.6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
fruit <- c("apple", "banana", "pear", "pinapple")

str_subset(fruit, "a")
#> [1] "apple" "banana" "pear" "pinapple"
str_subset(fruit, "^a")
#> [1] "apple"
str_subset(fruit, "a$")
#> [1] "banana"
str_subset(fruit, "b")
#> [1] "banana"
str_subset(fruit, "[aeiou]")
#> [1] "apple" "banana" "pear" "pinapple"

# Missings never match
str_subset(c("a", NA, "b"), ".")
#> [1] "a" "b"

References

1. https://dplyr.tidyverse.org/reference/filter_all.html
2. https://stackoverflow.com/questions/13110076/function-to-concatenate-paths
3. https://stat.ethz.ch/R-manual/R-devel/library/base/html/list.files.html
4. https://psychwire.wordpress.com/2011/06/03/merge-all-files-in-a-directory-using-r-into-a-single-dataframe/#comment-24
5. https://dplyr.tidyverse.org/reference/select_helpers.html
6. https://stringr.tidyverse.org/reference/str_subset.html